Decomposability of direct products of modules
نویسندگان
چکیده
منابع مشابه
dedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولDegeneracy and Decomposability in Abelian Crossed Products
Let p be an odd prime. In this paper we study the relationship between degeneracy and decomposability in abelian crossed products. In particular we construct an indecomposable abelian crossed product division algebra of exponent p and index p. The algebra we construct is generic in the sense of [AS78] and has the property that its underlying abelian crossed product is a decomposable division al...
متن کاملCotensor Products of Modules
Let C be a coalgebra over a field k and A its dual algebra. The category of C-comodules is equivalent to a category of A-modules. We use this to interpret the cotensor product M N of two comodules in terms of the appropriate Hochschild cohomology of the A-bimodule M ⊗N , when A is finite-dimensional, profinite, graded or differential-graded. The main applications are to Galois cohomology, comod...
متن کاملTensor Products of Modules
The notion of a tensor product of topological groups and modules is important in theory of topological groups, algebraic number theory. The tensor product of compact zero-dimensional modules over a pseudocompact algebra was introduced in [B] and for the commutative case in [GD], [L]. The notion of a tensor product of abelian groups was introduced in [H]. The tensor product of modules over commu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1979
ISSN: 0021-8693
DOI: 10.1016/0021-8693(79)90328-4